Skip to main content
Log in

Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system

  • Articles
  • Cell Growth/Differentiation/Apotosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Human mesenchymal stem cells (hMSCs) derived from bone marrow have the capacity to differentiate along a number of connective tissue pathways and are an attractive source of chondrocyte precursor cells. When these cells are cultured in a three-dimensional format in the presence of transforming growth factor-β, they undergo characteristic morphological changes concurrent with deposition of cartilaginous extracellular matrix (ECM). In this study, factors influencing hMSC chondrogenesis were investigated using an alignate layer culture system. Application of this system resulted in a more homogeneous and rapid synthesis of cartilaginous ECM than did micromas cultures and presented a more functional format than did alginate bead cultures. Differentiation was found to be dependent on initial seeding density and was interrelated to cellular proliferation. Maximal glycosaminoglycan (GAG) synthesis defined an, optimal hMSC seeding density for chondrogenesis at 25×106 cells/ml. Inclusion of hyaluronan in the alginate layer at the initiation of cultures enhanced chondrogenic differentiation in a dose-dependent manner, with maximal effect seen at 100 μg/ml. Hyaluronan increased GAG synthesis at early time points, with greater effect, seen at lower cell densities, signifying cell-cell contact involvement. This culture system offers additional opportunities for elucidating conditions influencing chondrogenesis and for modeling cartilage homeostasis or osteoarthritic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, C. W.; Rooney, P.; Wolpert, L. Cell shape and cartilage differentiation of early chick limb bud cells in culture. Cell Differ. 11 (Suppl. 4):245–251; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Aydelotte, M. B.; Thonar, E. J.; Mollenhauer, J.; Flechtenmacher, J. Culture of chondrocytes in alginate gel: variations in conditions of gelation influence the structure of the alginate gel, and the arrangement and morphology of proliferating chondrocytes. In Vitro Cell. Dev. Biol. 34A (Suppl. 2):123–130; 1998.

    Google Scholar 

  • Ballock, R. T.; Heydemann, A.; Wakefield, L. M.; Flanders, K. C.; Roberts, A. B.; Sporn, M. B. Inhibition of the chondrocyte phenotype by retinoic acid involves upregulation of metalloprotease genes independent of TGF-beta. J. Cell Physiol. 159 (Suppl. 2):340–346; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ballock, R. T.; Reddi, A. H. Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J. Cell Biol. 126 (Suppl. 5): 1311–1318; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Barry, F.; Boynton, R. E.; Liu, B.; Murphy, J. M. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268 (Suppl. 2): 189–200; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Beekman, B.; Verzijl, N.; de Roos, J. A.; TeKoppele, J. M. Matrix degradation by chondrocytes cultures in alginate: IL-1 beta induces proteoglycan degradation and proMMP synthesis but does not result in collagen degradation. Osteoarthritis Cartilage 6 (Suppl. 5):330–340; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Benya, P. D.; Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30 (Suppl. 1):215–224; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Bjornsson, S. Simultaneous preparation and quantitation of proteoglycans by precipitation with alcian blue. Ann. Biochem. 210 (Suppl. 2):282–291; 1993.

    Article  CAS  Google Scholar 

  • Bonaventure, J.; Kadhom, N.; Cohen-Solal, L.; Ng, K. H.; Bourguignon, J.; Lasselin, C.; Freisinger, P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212 (Suppl. 1):97–104; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Bruckner, P.; Horler, I.; Mendler, M.; Houze, Y.; Winterhalter, K. H.; Eich-Bender, S. G.; Spycher, M. Induction and prevention of chondrocyte hypertrophy in culture. J. Cell Biol. 109 (Suppl. 5):2537–2545; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Buckwalter, J. A.; Mankin, H. J. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47:477–486; 1998.

    PubMed  CAS  Google Scholar 

  • Chow, G.; Nietfeld, J. J.; Knudson, C. B.; Knudson, W. Antisense inhibition of chondrocyte CD44 expression leading to cartilage chondrolysis. Arthritis Rheum. 41 (Suppl. 8):1411–1419; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cortivo, R.; De Galateo, A.; Castellani, I.; Brun, M. G.; Abatangelo, G. Hyaluronic acid promotes chick embryo fibroblast and chondroblast expression. Cell Biol. Int. Rep. 14 (Suppl. 2):111–122; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Cottrill, C. P.; Archer, C. W.; Wolpert, L. Cell sorting and chondrogenic aggregate formation in micromass culture. Dev. Biol. 122 (Suppl. 2):503–515; 1987.

    Article  PubMed  CAS  Google Scholar 

  • D'Angelo, M.; Pacifici, M. Articular chondrocytes produce factors that inhibit maturation of sternal chondrocytes in serum-free agarose cultures: a TGF-beta independent process. J. Bone Miner. Res. 12 (Suppl. 9):1368–1377; 1997.

    Article  PubMed  Google Scholar 

  • Dowthwaite, G. P.; Edwards, J. C.; Pitsillides, A. A. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J. Histochem. Cytochem. 46 (Suppl. 5):641–651; 1998.

    PubMed  CAS  Google Scholar 

  • Fell, H. B. The histogenesis of cartilage and bone in the long bones of the embrionic fowl. J. Morphol. 40:417–451; 1925.

    Article  Google Scholar 

  • Fraser, J. R.; Laurent, T. C.; Laurent, U. B. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242 (Suppl. 1):27–33; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, K.; Dan, H.; Takayama, M.; Kumano, F.; Saitoh, M.; Tanaka, S. Hyaluronic acid increases proteoglycan synthesis in bovine articular cartilage in the presence of interleukin-1. J. Pharmacol. Exp. Ther. 277 (Suppl. 3):1672–1675; 1996.

    PubMed  CAS  Google Scholar 

  • Grandolfo, M.; D'Andrea, P.; Paoletti, S.; Martina, M.; Silvestrini, G.; Bonucci, E.; Vittur, F. Culture and differentiation of chondrocytes entrapped in alginate gels. Calcif. Tissue Int. 52 (Suppl. 1):42–48; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, K. E.; Marsden, M. E.; Anderson-MacKenzie, J.; Bard, J. B.; Bruckner, P.; Farjanel, J.; Robins, S. P.; Hulmes, D. J. Abnormal collagen assembly, though normal phenotype, in alginate bead, cultures of chick embryo chondrocytes. Exp. Cell Res. 246 (Suppl. 1):98–107; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Grobstein, C. Mechanisms of organogenetic tissue interaction. Natl. Cancer Inst. Monogr. 26:279–299; 1967.

    PubMed  CAS  Google Scholar 

  • Gruber, H. E.; Fisher, E. C., Jr.; Desai, B.; Stasky, A. A.; Hoelscher, G.; Hanley, E. N. Jr. Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-betal. Exp. Cell Res. 235 (Suppl. 1):13–21; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J. F.; Jourdian, G. W.; MacCallum, D. K. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect. Tissue Res. 19 (Suppl. 2–4):277–297; 1989.

    PubMed  CAS  Google Scholar 

  • Hall, B. K.; Miyake, T. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39 (Suppl. 6):881–893; 1995.

    PubMed  CAS  Google Scholar 

  • Halle, J. P.; Landry, D.; Fournier, A.; Beaudry, M.; Leblond, F. A. Method for the quantification of alginate in microcapsules. Cell Transplant. 2 (Suppl. 5):429–436; 1993.

    PubMed  CAS  Google Scholar 

  • Hauselmann, H. J.; Aydelotte, M. B.; Schumacher, B. L.; Kuettner, K. E.; Citelis, S. H.; Thonar, E. J. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 12 (Suppl. 2):116–129; 1992.

    PubMed  CAS  Google Scholar 

  • Hauselmann, H. J.; Fernandes, R. J.; Mok, S. S.; Schmid, T. M.; Block, J. A.; Aydelotte, M. B.; Kuettner, K. E.; Thonar, E. J. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J. Cell Sci. 107 (Pt. 1):17–27; 1994.

    PubMed  Google Scholar 

  • Hauselmann, H. J.; Masuda, K.; Hunziker, E. B.; Neidhart, M.; Mok, S. S.; Michel, B. A.; Thonar, E. J. Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am. J. Physiol. 271 (3 Pt. 1):C742-C752; 1996.

    PubMed  CAS  Google Scholar 

  • Haynesworth, S. E.; Goshima, J.; Goldberg, V. M.; Caplan, A. I. Characterization of cells with osteogenic potential from human marrow. Bone 13 (Suppl. 1):81–88; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Homandberg, G. A.; Hui, F.; Wen, C.; Kuettner, K. E.; Williams, J. M. Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: I. In Vitro Osteoarthritis Cartilage 5 (Suppl. 5):309–319; 1997.

    Article  CAS  Google Scholar 

  • Horwitz, A. L.; Dorfman, A. The growth of cartilage cells in soft agar and liquid suspension. J. Cell Biol. 45 (Suppl. 2):434–438; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, B.; Hering, T. M.; Caplan, A. I.; Goldberg, V. M.; Yoo, J. U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238 (Suppl. 1):265–272; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, J. H.; Hardingham, T. E.; Hascall, V. C.; Solursh, M. Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J. Biol. Chem. 254 (Suppl. 8):2600–2609; 1979.

    PubMed  CAS  Google Scholar 

  • Knudson, C. B. Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix. J. Cell Biol. 120 (Suppl. 3):825–834; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Knudson, C. B.; Knudson, W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 7 (Suppl. 13):1233–1241; 1993.

    PubMed  CAS  Google Scholar 

  • Knudson, C. B.; Nofal, G. A.; Pamintuan, L.; Aguiar, D. J. The, chomdrocyte pericellular matrix: a model for hyaluronan-mediated cell-matrix interactions. Biochem. Soc. Trans. 27 (Suppl. 2):142–147; 1999.

    PubMed  CAS  Google Scholar 

  • Knudson, C. B.; Toole, B. P. Changes in the pericellular matrix during differentiation of limb bud mesoderm. Dev. Biol. 112 (Suppl. 2):308–318; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Kolettas, E.; Buluwela, L.; Bayliss, M. T.; Muir, H. I. Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. J. Cell. Sci. 108 (Pt. 5):1991–1999; 1995.

    PubMed  CAS  Google Scholar 

  • Kosher, R. A.; Kulyk, W. M.; Gay, S. W. Collagen gene expression during limb cartilage differentiation. J. Cell Biol. 102 (Suppl. 4):1151–1156; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Kulyk, W. M.; Kosher, R. A. Temporal and spatial analysis of hyaluronidase activity during development of the embryonic chick limb bud. Dev. Biol. 120 (Suppl. 2):535–541; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Lemare, F.; Steimberg, N.; Le Griel, C.; Demignot, S.; Adolphe, M. Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin-1beta. J. Cell. Physiol. 176 (Suppl. 2):303–313; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H.; Lee, Y. W.; Dean, M. F. Re-expression of differentiated, proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim. Biophys. Acta 1425 (Suppl. 3):505–515; 1998.

    PubMed  CAS  Google Scholar 

  • Mackay, A. M.; Beck, S. C.; Murphy, J. M.; Barry, F. P.; Chichester, C. O.; Pittenger, M. F. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4 (Suppl. 4):415–428; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Maleski, M. P.; Knudson, C. B. Matrix accumulation and retention in embryonic cartilage and in vitro chondrogenesis. Connect. Tissue Res. 34 (Suppl. 1):75–86; 1996a.

    PubMed  CAS  Google Scholar 

  • Maleski, M. P.; Knudson, C. B. Hyaluronan-mediated aggregation of limb bud mesenchyme and mesenchymal condensation during chondrogenesis. Exp. Cell Res. 225 (Suppl. 1):55–66; 1996b.

    Article  PubMed  CAS  Google Scholar 

  • Martin, I.; Padera, R. F.; Vunjak-Novakovic, G.; Freed, L. E. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J. Orthop. Res. 16 (Suppl. 2):181–189; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mok, S. S.; Masuda, K.; Hauselmann, H. J.; Aydelotte, M. B.; Thonar, E. J. Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J. Biol. Chem. 269 (Suppl. 52):33021–33027; 1994.

    PubMed  CAS  Google Scholar 

  • Muraglia, A.; Cancedda, R.; Quarto, R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J. Cell. Sci. 113 (Pt. 7):1161–1166; 2000.

    PubMed  CAS  Google Scholar 

  • Ng, C. K.; Handley, C. J.; Preston, B. N.; Robinson, H. C.; Bolis, S.; Parker, G. Effect of exogenous hyaluronan and hyaluronan oligosaccharides on hyaluronan and aggrecan synthesis and catabolism in adult articular cartilage explants. Arch. Biochem. Biophys. 316 (Suppl. 1):596–606; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, Y.; Knudson, C. B.; Nietfeld, J. J.; Margulis, A.; Knudson, W. Antisense inhibition of hyaluronan synthase-2 in human articular chondrocytes inhibits proteoglycan retention and matrix assembly. J. Biol. Chem. 274 (Suppl. 31):21893–21899; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Oberleuder, S. A.; Tuan, R. S. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120 (Suppl. 1):177–187; 1994.

    Google Scholar 

  • Pittenger, M. F.; Mackay, A. M.; Beck, S. C., et al. Multilineage potential of adult human mesenchymal stem cells. Science 284 (Suppl. 5411):143–147; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ponticiello, M. S.; Schinagl, R. M.; Kadiyala, S.; Barry, F. P. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J. Biomed. Mater. Res. 52 (Suppl. 2):246–255; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Quarto, R.; Campanile, G.; Cancedda, R.; Dozin, B. Modulation of commitment, proliferation, and differentiation of chondrogenic cells in defined culture medium. Endocrinology 138 (Suppl. 11):4966–4976; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei, M.; De Souza, P. Differentiation of mesenchymal limb bud cells to chondrocytes in alginate beads. Cell Biol. Int. 21 (Suppl. 2):75–86; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Singer, V. L.; Jones, L. J.; Yue, S. T.; Haugland, R. P. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Ann. Biochem. 249 (Suppl. 2):228–238; 1997.

    Article  CAS  Google Scholar 

  • Solursh, M. Formation of cartilage tissue in vitro. J. Cell Biochem. 45 (Suppl. 3):258–260; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Solursh, M.; Hardingham, T. E.; Hascall, V. C.; Kimura, J. H. Separate effects of exogenous hyaluronic acid on proteoglycan synthesis and deposition in pericellular matrix by cultured chick embryo limb chondrocytes. Dev. Biol. 75 (Suppl. 1):121–129; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Solursh, M.; Linsenmayer, T. F.; Jensen, K. L. Chondrogenesis from single limb mesenchyme cells. Dev. Biol. 94 (Suppl. 1):259–264; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Sommarin, Y.; Larsson, T.; Heinegard, D. Chondrocyte-matrix interactions. Attachment to proteins isolated from cartilage. Exp. Cell Res. 184 (Suppl. 1):181–192; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Srinivas, G. R.; Chichester, C. O.; Barrach, H. J.; Pillai, V.; Matoney, A. L. Production of type II collagen specific monoclonal antibodies. Immunol. Invest. 23 (Suppl. 2):85–98; 1994.

    PubMed  CAS  Google Scholar 

  • Stein, G. S.; Lian, J. B.; Owen, T. A. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 4 (Suppl. 13):3111–3123; 1990.

    PubMed  CAS  Google Scholar 

  • Tacchetti, C.; Tavella, S.; Dozin, B.; Quarto, R.; Robino, G.; Cancedda, R. Cell condensation in chondrogenic differentiation. Exp. Cell Res. 200 (Suppl. 1):26–33; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, A. Y.; Piez, K. A.; Seyedin, S. M. Chondrogenesis in agarose gel culture. A model for chondrogenic induction, proliferation and differentiation. Exp. Cell Res. 157 (Suppl. 2):483–494; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Thorogood, P. V.; Hinchliffe, J. R. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J. Embryol. Exp. Morphol. 33 (Suppl. 3):581–606; 1975.

    PubMed  CAS  Google Scholar 

  • Toole, B. P. Hyaluronan and its binding proteins, the hyaladherins. Curr. Opin. Cell Biol. 2 (Suppl. 5):839–844; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Toole, B. P.; Munaim, S. I.; Welles, S.; Knudson, C. B. Hyaluronate-cell interactions and growth factor regulation of hyaluronate synthesis during limb development. Ciba Found. Symp. 143:138–145, discussion 145–149, 281–285; 1989.

    PubMed  CAS  Google Scholar 

  • Tsunematsu, Y. Effects of the lens capsule on cellular flattening, cell growth and expression of the differentiated traits of chondrocytes cultured in vitro. Dev. Growth Differ. 21:437–444; 1979.

    Article  Google Scholar 

  • van Osch, G. J.; van den Berg, W. B.; Hunziker, E. B.; Hauselmann, H. J. Differentiation effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage 6 (Suppl. 3):187–195; 1998.

    PubMed  Google Scholar 

  • von der Mark, K.; Conrad, G. Cartilage cell differentiation: review. Clin. Orthop. 139:185–205; 1979.

    PubMed  Google Scholar 

  • Weigel, P. H.; Hascall, V. C.; Tammi, M. Hyaluronan synthases. J. Biol. Chem. 272 (Suppl. 22):13997–14000; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wiebkin, O. W.; Muir, H. Synthesis of proteoglycans by suspension and monolayer cultures of adult chondrocytes and de novo cartilage nodules—the effect of hyaluronic acid. J. Cell Sci. 27:199–211; 1977.

    PubMed  CAS  Google Scholar 

  • Yoo, J. U.; Barthel, T. S.; Nishimura, K.; Solchaga, L.; Caplan, A. I.; Goldberg, V. M.; Johnstone, B. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J. Bone Joint Surg. Am. 80 (Suppl. 12):1745–1757; 1998.

    PubMed  CAS  Google Scholar 

  • Zanetti, N. C.; Solursh, M. Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J. Cell Biol. 99 (1 Pt. 1):115–123; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, B.; Scharlach, E.; Kaatz, R. Cell contact and surface coat alterations of limb-bud mesenchymal cells during differentiation. J. Embryol. Exp. Morphol. 72:1–18; 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Barry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavalkovich, K.W., Boynton, R.E., Mary Murphy, J. et al. Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system. In Vitro Cell.Dev.Biol.-Animal 38, 457–466 (2002). https://doi.org/10.1290/1071-2690(2002)038<0457:CDOHMS>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0457:CDOHMS>2.0.CO;2

Key words

Navigation